Hankel Determinants for a New Subclasses of Analytic Functions Involving a Linear Operator

نویسندگان

چکیده

Using the operator L(a, c) defined by Carlson and Shaffer, we a new subclass of analytic functions ML(λ, a, c). The well known Fekete-Szegö problem, upper bound Hankel determinant order two, coefficient fourth is determined. Our investigation generalises some previous results obtained in different articles.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new class of analytic functions involving a linear integral operator 1

Using the linear operator Iλ, μ (λ > −1, μ > 0), we introduce and study a new class Q(λ, μ, α, φ) of analytic functions. We derive inclusion relationship and integral representation. We also show that this class is closed under convolution with a convex function. Some applications of this theorem are also discussed. 2000 Mathematics Subject Classification: 30C45, 30C50.

متن کامل

Inclusion Properties for Certain Subclasses of Analytic Functions Defined by a Linear Operator

which are analytic in the open unit disk U {z ∈ C : |z| < 1}. If f and g are analytic in U, we say that f is subordinate to g, written f ≺ g or f z ≺ g z if there exists an analytic function w in U with w 0 0 and |w z | < 1 for z ∈ U such that f z g w z . We denote by S∗, K, and C the subclasses of A consisting of all analytic functions which are, respectively, starlike, convex, and close-to-co...

متن کامل

Coefficient bounds for a new class of univalent functions involving Salagean operator and the modified Sigmoid function

We define a new subclass of univalent function based on Salagean differential operator and obtained the initial Taylor coefficients using the techniques of Briot-Bouquet differential subordination in association with the modified sigmoid function. Further we obtain the classical Fekete-Szego inequality results.

متن کامل

Differential sandwich theorems for some subclasses of analytic functions associated with linear operator

Let q1 and q2 be univalent in ∆ := {z : |z| < 1} with q1(0) = q2(0) = 1. We give some applications of first order differential subordination and superordination to obtain sufficient conditions for a normalized analytic functions f with f(0) = 0 , f ′(0) = 1 to satisfy q1(z) ≺ zf ′(z) f(z) λ ≺ q2(z).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Kragujevac journal of mathematics

سال: 2022

ISSN: ['2406-3045', '1450-9628']

DOI: https://doi.org/10.46793/kgjmat2204.605p